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Abstract. Lifting perspective images and videos to 360◦ panoramas
enables immersive 3D world generation. Existing approaches often rely on
explicit geometric alignment between the perspective and the equirectan-
gular projection (ERP) space. Yet, this requires known camera metadata,
obscuring the application to in-the-wild data where such calibration is typi-
cally absent or noisy. We propose 360Anything, a geometry-free framework
built upon pre-trained diffusion transformers. By treating the perspective
input and the panorama target simply as token sequences, 360Anything
learns the perspective-to-equirectangular mapping in a purely data-driven
way, eliminating the need for camera information. Our approach achieves
state-of-the-art performance on both image and video perspective-to-360◦

generation, outperforming prior works that use ground-truth camera
information. We also trace the root cause of the seam artifacts at ERP
boundaries to zero-padding in the VAE encoder, and introduce Circu-
lar Latent Encoding to facilitate seamless generation. Finally, we show
competitive results in zero-shot camera FoV and orientation estimation
benchmarks, demonstrating 360Anything’s deep geometric understand-
ing and broader utility in computer vision tasks. Additional results are
available at https://360anything.github.io.
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1 Introduction

Generating photorealistic 3D worlds is an exciting and challenging frontier in
generative modeling, offering transformative potential across robotics, AR/VR,
and gaming. Recent years have witnessed significant advancements in this do-
main [36,66,75,81], largely propelled by the dramatic progress in visual generative
models [5, 34, 60, 67, 79]. However, standard generators produce perspective views,
capturing a narrow view of the physical world, and limiting their utility in creat-
ing fully immersive 3D worlds. This limitation has spurred significant interest
in 360◦ generative models [71,82,84,100], especially those for lifting perspective
imagery to omnidirectional 360◦ panoramas [14,29,46,74].

† Work done at Google DeepMind.

https://360anything.github.io
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Fig. 1: 360Anything lifts arbitrary perspective images (row 1) and videos (row 2) to
seamless, gravity-aligned 360◦ panoramas. Model inputs and their projected regions
are highlighted in red or green. Below each panorama, we show four perspective
projections facing left, front, right, and back. Without using explicit camera information,
360Anything handles images with varying Field-of-View and videos with large object
and camera motion. The generated consistent panoramas enable 3D scene reconstruction
via 3D Gaussian Splatting (row 3). Please see our project page for results in 360◦viewers.

Despite recent progress, current approaches for perspective-to-panorama
generation lack the robustness needed for “in-the-wild” inputs. To bridge the
gap between perspective and panoramic spaces, prior works often rely on strong
geometric inductive biases, such as explicitly projecting the perspective input
to the target Equirectangular Projection (ERP) space to provide an aligned
conditioning signal [46,74,89,102]. However, this strategy requires known camera
metadata, such as Field-of-View (FoV) and camera pose (yaw, pitch, roll) [46].
As a consequence, these models struggle with inputs where such metadata is
absent, or are brittle when relying on noisy external estimators.

We posit that explicit geometric alignment is unnecessary for panorama
generation. Instead, with sufficient data, a general-purpose architecture should be
able to learn these relationships from data. To this end, our proposed framework
utilizes a diffusion transformer (DiT) [54], and treats the perspective input and
target panorama simply as token sequences. With attention on the concatenated
sequence, the model learns their geometric relationship. This enables the model
to effectively “place” the perspective input onto the 360◦ canvas and synthesize
the remaining context, handling varying FoVs and camera poses as shown in
Figure 1. Our pipeline thus eliminates the camera estimation step and makes the
task fully end-to-end, which enjoys the benefit of scaling up model and data.

https://360anything.github.io
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Beyond an end-to-end framework, we also address the common issue of
seam artifacts at the boundary of a generated ERP image. Existing works
rely on inference time tricks such as rotation augmentations to mitigate visible
seams [46,84,89]. In contrast, we identify and eliminate the root cause of these
artifacts during the training stage itself. Modern diffusion models often operate
in the latent space of a convolution-based VAE [60], and VAEs utilize zero-
padding in convolutional layers [27]. This introduces boundary artifacts in the
latent representation of panorama data, which leads to seams in the generated
panoramas. We propose a simple solution that uses circular padding when
encoding VAE latents. This ensures that the latent representation has circular
continuity, thereby eliminating the root cause of seam artifacts.

In summary, this work makes the following contributions:
1. We propose 360Anything, a novel DiT-based architecture for “in-the-wild”

perspective to canonical panorama generation that implicitly infers camera
intrinsics and extrinsics, eliminating the need for camera calibration.

2. We identify VAE latent encoding as the root cause of seam artifacts in
panorama generation and propose a simple remedy that mitigates the issue.

3. Despite not using camera metadata, 360Anything achieves state-of-the-art per-
formance for panoramic image and video generation, outperforming baselines
that have access to extra camera information.

4. We evaluate the accuracy of our estimated FoV and camera poses, show-
ing competitive results against supervised baselines. Furthermore, we can
reconstruct consistent 3D scenes from our generated panoramic videos.

2 Related Work

Panorama Image Generation. Early approaches used GANs [10, 17, 19, 45, 48,
49,69] or autoregressive generators [1, 8, 12,104]. Recent methods have switched
to diffusion models [22, 60] due to their state-of-the-art performance. One line of
work generates panoramas from text prompts [14,50,71,82]. They often design
better panorama representations [6, 51] or panorama-aware operations [95, 99] to
reuse knowledge in pre-trained perspective generators. Closer to 360Anything are
methods that outpaint panoramas from narrow field-of-view images [37,42,80,94].
The majority of them project the conditioning perspective image to ERP space
to be pixel-aligned with the target panorama, and then execute diffusion in ERP
space [83,89]. To handle the geometric properties of panoramas, they often inject
strong inductive bias such as spherical convolutions [73, 88] and dual branch
architectures [102]. A few works explore the cubemap representation to eliminate
large distortions inherent in the ERP [25,29]. However, existing methods either
require known camera information to perform the projection, or assume the
conditioning image has a fixed viewpoint and FoV. In contrast, our method treats
the problem as a sequence-to-sequence task learned directly from data.
Panorama Video Generation. Some works directly fine-tune pre-trained video
generators to produce panorama videos from text [43, 84, 90, 100]. This paper
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instead tackles the task of panoramic outpainting from perspective videos [40,
47, 93]. Imagine360 [74] duplicates the denoising U-Net in AnimateDiff [18]
to process panorama and perspective views separately, connected by spherical
attention for information exchange. ViewPoint [13] proposes an improved cubemap
representation to reduce the geometric distortion of ERP. Argus [46] further
scales up training data to unconstrained YouTube videos [78]. Nevertheless, these
methods (i) rely on external tools to estimate camera metadata of the conditioning
video, and (ii) use inference tricks to eliminate seams in the generation. In contrast,
360Anything learns to pose the input video in 4D space, and remove seams by
identifying its root cause and adjusting the architecture.
Prior-Free Learning with Transformers. Recently, Transformers have dom-
inated tasks that previously relied on inductive bias, including image genera-
tion [54,92], editing [35,87], and 3D understanding [61,86]. While the majority of
panorama generation methods still leverage a U-Net based architecture [29,46],
we identify this as a major limiting factor for the field. 360Anything instead
runs Transformers on a sequence of tokens without any geometric prior, while
achieving state-of-the-art results across multiple tasks.

3 Method

Task formulation. Given a perspective video with T frames, Xpers ∈ RT×h×w×3

(we treat image as a special case with T=1) and a caption e, our goal is to
outpaint a 360◦ panoramic video Yequi ∈ RT×H×W×3. In this work, we represent
panorama data in the Equirectangular Projection (ERP) space.
Overview. Our method builds upon pre-trained latent diffusion transformers [54]
(Sec. 3.1). We leverage a simple sequence concatenation approach to learn the
perspective-to-equirectangular mapping and generate panoramas in a gravity-
aligned canonical space (Sec. 3.2). Finally, we address the seam artifacts of
generated panoramas by analyzing the panoramic latent space (Sec. 3.3). The
overall architecture of 360Anything is shown in Figure 2.

3.1 Background

We adopt the flow matching framework [41,44], which learns a denoiser Gθ that
maps from the standard normal distribution ϵ ∼ N (0, I) to the distribution of
panorama data Yequi ∼ pdata. The forward diffusion process adds noise to clean
data to obtain a noisy input Yt

equi at time t ∈ [0, 1]; i.e., Yt
equi = (1− t)Yequi + tϵ.

The denoiser Gθ, implemented as a neural network parameterized by θ, is trained
to reverse this process with the following objective:

min
θ

Et∼p(t),Yequi∼pdata,ϵ∼N (0,I)∥(ϵ−Yequi)− Gθ(Y
t
equi, t, c)∥2, (1)

where p(t) is the distribution of noise levels [11] and c refers to the auxiliary
conditioning inputs, which in our case are the caption and the perspective input.
We implement the denoiser Gθ as a diffusion transformer (DiT) [34,54,79].
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Fig. 2: 360Anything pipeline. Given a raw 360◦ training video with arbitrary camera
orientations, we first estimate per-frame camera poses and rotate frames to align with
the first frame. We then estimate the video’s gravity direction and align it with the
vertical axis. With such a canonicalized 360◦ video, we project it to a perspective video
using randomly sampled camera intrinsics and poses (Sec. 4.2). We then encode both the
conditioning and target videos to latent tokens. Critically, we employ Circular Latent
Encoding for the target 360◦ video to avoid seam artifacts in the latent representation.
The conditioning tokens (orange) and noisy target tokens (green) are concatenated
along the sequence dimension and fed into a diffusion transformer (DiT). The denoised
tokens can be decoded back to a 360◦ video via circular latent decoding.

To generate samples at a high resolution, modern diffusion models typically
operate in the latent space of a pre-trained convolution-based VAE [60]. Following
this practice, we encode panorama data Yequi to a latent representation yequi via
an encoder E , which can be decoded back to the pixel space with a decoder D:

yequi = E(Yequi), Ŷequi = D(yequi). (2)

The latent representation yequi is then patchified and flattened into a 1D sequence
of tokens that is provided as input to the DiT.

3.2 Geometry-Free Scalable Panorama Generation

A core challenge in perspective-to-panorama generation lies in finding an effective
solution for conditioning the model on the perspective input Xpers. Prior works [46,
74, 83, 89] typically project Xpers into the ERP space to obtain Xproj

equi, which is
pixel-aligned with the generation target Yequi. Then, they concatenate the latent
of Xproj

equi and the noisy latent ytequi channel-wise as the input to the diffusion
model. This approach imposes a strong geometric inductive bias by explicitly
localizing the perspective input Xpers on the panorama output Yequi, drastically
simplifying the task to image outpainting. However, pixel-aligned perspective-to-
panorama projection requires precise camera Field-of-View (FoV) and orientation
estimates [46]. For in-the-wild test data, this information is generally unavailable,
and existing estimation methods can be noisy [39,77,85], resulting in accumulated
errors and suboptimal performance. Consequently, when off-the-shelf camera
estimators fail, channel-concatenation approaches break down completely due to
the reliance on pixel-aligned conditioning; see Appendix B.1.
Sequence concatenation. We propose to relax this constraint by treating
geometric alignment as a task we can learn from data. Instead of enforcing spatial
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correspondence via projection into the ERP space, we employ a simple sequence
concatenation mechanism inspired by recent image editing models [35,87]. We
directly encode the perspective input to latents: xpers = E(Xpers), and append
it to the noisy latents ytequi as the DiT input: Concat([xpers, ytequi]). The DiT
thus runs global self-attention on the combined sequence of tokens. It learns to
generate latents in the ERP image by reasoning their relationship to latents in
the perspective image in a purely data-driven way.
Generating canonical panoramas. Since we do not provide explicit camera
pose to the model, the generated panorama Yequi can be in any coordinate system.
Prior works [13,29] assume the conditioning view Xpers is always at the center of
the ERP, hence generating panoramas with “unnatural” gravity directions (i.e.,
not pointing towards the bottom of the panorama). However, this requires the
model to learn different spherical distortion patterns depending on the actual
pose of the input Xpers. Our ablations show that this leads to degraded visual
quality (see Tab. 7). Instead, we enforce a Canonical Coordinate constraint, for
which the model is trained to generate panoramas in a standard, gravity-aligned
upright orientation, regardless of the camera pose of the input Xpers. This requires
the model to infer the camera pose of Xpers to “place” it on a canonical 360◦
canvas, and generate the rest of the panorama accordingly.

Implementing the canonical training objective requires ground-truth panora-
mas to be consistently aligned. This condition is naturally satisfied by our image
datasets as they are predominantly synthetic renderings of 3D scenes [103]. Yet,
our real-world video datasets [78] frequently exhibit arbitrary non-canonical
orientations. Thus, we design a two-stage data pre-processing pipeline. We first
apply COLMAP [64] to estimate per-frame camera pose, and rotate each frame
to have zero rotation relative to the first frame. Then, we run GeoCalib [77] to
estimate the global gravity direction of the stabilized video, and rotate the video
to align the gravity direction with the vertical axis. This data pre-processing step
ensures the model trains on consistent, gravity-aligned data, thereby generating
canonical videos at test time. See Figure 8 in the Appendix for an example.

3.3 Seam-free Generation via Circular Latent Encoding

A common issue in panorama generation is “seam artifacts”, where the left and
right boundaries of the ERP image have visible discontinuities when concatenated
(see Fig. 7). Prior works often attribute this to the generation process, employing
inference time tricks such as rotated denoising (shifting the panorama cyclically
across sampling steps) [89,90] and circular padding in the VAE decoder [84].

We argue that the root cause of seams lies not in the inference stage, but in the
training stage. Modern diffusion models are often applied in the latent space of a
convolution-based VAE. When encoding a panorama image in the ERP format,
the convolution layers perform zero-padding at the image boundaries, which
introduces boundary artifacts in the feature maps [27]. As a result, even if the
panorama image Yequi is free from seams in pixel space, its latent representation
yequi contains a discontinuity (Fig. 3a). We posit that this discontinuity is the
root cause of seam artifacts in the generated panorama.
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Fig. 3: Illustration of Circular Latent Encoding. The top row (a) shows the seam
artifact from naive VAE encoding. Shifting the encoded panorama latent by 180◦ shows
a sharp discontinuity at the center, resulting in gray line-like artifacts when decoded
back to image. The bottom row (b) illustrates our solution. Before encoding, we apply
circular padding to the panorama image. After encoding, the latents in the padded
regions are dropped. The shifted latent is now free from discontinuity, providing a
seamless latent representation for diffusion training.

To eliminate the seam discontinuity in the encoded latent, we propose Circular
Latent Encoding. Before encoding the latent of a panorama data, we crop w′ (set
as W/8 in our experiments) columns from its left and right regions, and pad
them to the opposite side of the panorama to extend the boundary at both sides:

ypadequi = E(Concat([Yequi[−w′:],Yequi,Yequi[:w
′]])). (3)

After encoding, we drop the latent corresponding to the padded regions. This
ensures the input sequence length to DiT is unchanged, thus introducing no
overhead to training and inference. This simple technique produces a seam-free
latent space (Fig. 3b), which serves as the correct target for model training.

4 Experiments

In this section, we conduct extensive experiments to answer the following ques-
tions: (i) How well does 360Anything perform on perspective-to-360◦ image and
video generation? (Sec. 4.1 and Sec. 4.2) (ii) How accurate are the camera FoV
and orientation inferred by our model? (Sec. 4.3) (iii) What is the impact of each
design choice in our framework? (Sec. 4.4)

4.1 Panoramic Image Outpainting

Implementation details. We fine-tune FLUX.1-dev [34], a state-of-the-art
(SoTA) open weights text-to-image DiT. We use the Adam optimizer [31] with
a learning rate of 5× 10−5 and train with a batch size of 512 for 50k steps. At
inference time, we use FLUX’s default sampler [44] with 50 sampling steps and
timestep shifting of 3.16. See Appendix A.2 for more implementation details.
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Table 1: Quantitative results of perspective-to-360◦ image generation on
Laval Indoor and SUN360 datasets. We borrow baseline results from CubeDiff [29]
and report CubeDiff results under the single text description setting for a fair comparison.
360Anything achieves a clear improvement across all metrics, only marginally lagging
behind CubeDiff in terms of CLIP-FID on Laval Indoor.

Method
Laval Indoor SUN360

FID ↓ KID (×102) ↓ CLIP-FID ↓ FAED ↓ CS ↑ FID ↓ KID (×102) ↓ CLIP-FID ↓ FAED ↓ CS ↑
OmniDreamer [1] 71.0 5.17 23.9 19.2 - 92.3 8.89 51.7 30.4 -
PanoDiffusion [89] 58.6 4.08 26.6 106.8 - 52.9 3.51 28.9 98.0 -
Diffusion360 [14] 33.1 2.07 16.9 23.7 26.38 45.4 3.73 18.5 12.6 22.89
CubeDiff [29] 9.5 0.32 3.2 18.4 27.02 25.5 1.33 8.1 7.6 25.00
360Anything (ours) 8.0 0.22 4.6 9.8 29.21 22.4 1.27 7.3 3.8 28.07

Training data and augmentations. For a fair comparison against CubeDiff [29],
the prior state-of-the-art, we train on the same datasets with captions from Gemini
2.5 Flash [16]. To handle input images with diverse camera setup at test time, we
uniformly sample FoV in [30◦, 120◦], pitch in [−60◦, 60◦], roll in [−15◦, 15◦], and
use them to crop the conditioning perspective images for training. Following prior
works, we also perform horizontal roll augmentation on the panorama image. We
train the model to generate ERP images at 1024×2048 resolution.

Evaluation data and metrics. We follow the evaluation protocol proposed in
CubeDiff and report results on the Laval Indoor [15] and SUN360 [91] datasets.
To measure visual quality, we report Fréchet Inception Distance (FID) [21],
Kernel Inception Distance (KID) [2], FID on CLIP [58] features (CLIP-FID), and
FID on features of an auto-encoder fine-tuned on panorama images (FAED) [99].
Following prior works, FID, KID, CLIP-FID are computed on perspective crops
from the generated ERP image, while FAED is computed directly on the generated
ERP image. We also report CLIP-score (CS) [20] for text alignment.

Quantitative results. Table 1 compares 360Anything with several perspective-
to-panorama image generation baselines. In terms of visual quality, 360Anything
substantially outperforms all baselines on both datasets across FID, KID, and
FAED metrics. Although it marginally lags behind CubeDiff in CLIP-FID on
Laval Indoor (4.6 vs. 3.2), it outperforms it on SUN360 (7.3 vs. 8.1) which
has more complex scene layouts and textures. Notably, we achieve a significant
improvement in FAED, reducing the error by nearly 50% compared to the state-
of-the-art. FAED is the only metric evaluated on the entire panorama, and it
shows that 360Anything generates 360◦ images with clearly better quality and
geometry. Finally, our method also achieves the best CLIP-score, demonstrating
its superior capability in adhering to prompts.

Qualitative results. We only compare with CubeDiff since other baselines
lag behind by a large margin in all metrics. As CubeDiff is not open-sourced,
we compare with samples from their website. CubeDiff leverages a cubemap
representation with six faces, each with 90◦ FoV. It treats the conditioning image
as the front face and denoises the other five faces. As shown in Figure 4 left, it
sometimes generates visible seams between faces. In addition, when the input
perspective image has an FoV smaller than 90◦, CubeDiff has to stretch the object
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Fig. 4: Qualitative results of perspective-to-360◦ image generation. We show
multiple perspective views projected from the panorama, where the image with the
green border is the conditioning image. Due to the use of a cubemap representation,
CubeDiff sometimes generates seams between faces (left). In addition, CubeDiff always
assumes the input image has a 90◦ FoV; yet when the actual FoV is smaller, it has to
stretch the objects at the image boundary. This leads to distorted object structure, e.g.,
the balloons (middle) and the mushroom (right). In contrast, 360Anything estimates
the correct camera FoV and orientation of the input as shown by the green box on the
panorama image, and thus produces much less distorted objects. Please check out our
project page to view the generated panorama images interactively.

at the boundary, leading to distorted air-balloons (middle) and mushrooms (right).
In contrast, 360Anything accurately infers the camera parameters to place the
input image in the ERP space, and produces objects with the correct structure.

4.2 Panoramic Video Outpainting

Implementation details. We fine-tune Wan2.1-14B [79], a SoTA open source
text-to-video DiT. We use the Adam optimizer with a learning rate of 1× 10−5

and train with a batch size of 64 for 20k steps. For model inference, we run 50
sampling steps with Wan’s default sampler and a timestep shifting of 3.0.
Training data and augmentations. We take the same training data from
Argus [46], run our video canonicalization pipeline, and caption using Gemini
2.5 Flash. We follow Argus to simulate camera trajectories to crop conditioning
perspective videos in training. However, we note that simulated camera movement
lacks diversity. Thus, we also incorporate camera trajectories extracted from
real-world videos [59], which improves generalization to in-the-wild videos (see
Fig. 13 in the Appendix). We train on 512×1024 resolution videos with 81 frames.
Evaluation data and metrics. We adopt the 101 testing videos from Argus [46].
The conditioning perspective videos come from two types of camera trajectories,

https://360anything.github.io/index.html#360-image-result
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Table 2: Quantitative results of perspective-to-360◦ video generation. We
follow Argus [46] to evaluate on two sets of camera trajectories. Imag., Aes., and Motion
stand for the Imaging Quality, Aesthetic Quality, and Motion Smoothness metrics from
VBench [26]. Since the exact eval split used in Argus is unavailable, we reproduce the
eval split based on communication with the author (* denotes results on it). We report
both the original and our reproduced results for Argus, which closely match to validate
our reproduced eval set. Our method outperforms all baselines across all metrics.

Method
Real camera trajectory Simulated camera trajectory

PSNR ↑ LPIPS ↓ FVD ↓ Imag. ↑ Aes. ↑ Motion ↑ PSNR ↑ LPIPS ↓ FVD ↓ Imag. ↑ Aes. ↑ Motion ↑

Imagine360* [74] 21.00 0.2636 1398.9 0.4556 0.4658 0.9666 20.45 0.2719 1532.1 0.4485 0.4536 0.9725
Argus [46] 21.83 0.2409 1228.6 0.4939 0.4828 0.9802 21.50 0.2602 1100.1 0.4812 0.4784 0.9805
Argus* [46] 22.35 0.2310 1020.7 0.4971 0.4863 0.9728 21.10 0.2653 1127.2 0.4762 0.4682 0.9852
ViewPoint* [13] 23.25 0.1364 844.3 0.5293 0.5150 0.9881 22.77 0.1326 957.8 0.5105 0.5045 0.9827
360Anything (ours) 25.75 0.0468 483.4 0.5515 0.5427 0.9885 23.64 0.0846 432.9 0.5489 0.5394 0.9891
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“A person wearing a dark shirt and a hat holds the camera and is walking down a busy city street.”

Fig. 5: Qualitative results of perspective-to-360◦ video generation. Regions
corresponding to the input conditioning video are highlighted in red. Both Imagine360
and Argus exhibit low visual quality and distortions. ViewPoint always places the
conditioning video at the center of the output, and thus generates a rotated image
when the video contains large camera motion, leading to distortions (e.g., people and
buildings). In contrast, 360Anything generates stably canonicalized panorama videos,
and accurately follows the text prompt to outpaint a person holding the camera. Please
see our project page for better visual comparisons in the video format.

namely, simulated and extracted from real-world videos. To measure input preser-
vation, we report PSNR and LPIPS [101] between ground-truth and generated
panorama videos within regions covered by the perspective video. We also report
FVD [76], Imaging Quality, Aesthetic Quality, and Motion Smoothness from
VBench [26] to evaluate overall quality. Note that VBench metrics are computed
on perspective crops (left, right, front, back) of the generated panorama videos.
Quantitative results. Table 2 compares 360Anything with recent perspective-
to-360◦ video generation methods. We outperform all baselines across all metrics
on both subsets, often by a large margin. Surprisingly, while prior works construct

https://360anything.github.io/index.html#compare-with-baseline
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Input Generated Panorama Video Rendered Views from 3DGS

Fig. 6: Qualitative results of 3D scene reconstruction. Given an input monocular
video (left), 360Anything outpaints the whole 360◦ viewpoint (middle), from which we
can optimize a 3DGS (right). This allows fly-through exploration of the entire 3D scene.
Please check out our project page to view 360◦ rendering of the 3DGS.

“pixel-aligned” input by unprojecting the conditioning perspective video, our
method achieves better PSNR and LPIPS, meaning that it learns to better
preserve the conditioning perspective video in the output. The significantly lower
FVD indicates that our generated panorama videos exhibit more natural spherical
distortion in the ERP format. In addition, 360Anything achieves higher VBench
scores, demonstrating its superior visual and motion quality.
Qualitative results. As shown in Figure 5, 360Anything exhibits significantly
higher visual quality than Imagine360 [74] and Argus [46]. Since ViewPoint [13]
assumes the input video is always at the center of the ERP, it has to rotate the
generated panorama given a tilted perspective video, leading to distortions (e.g.,
people and buildings). In contrast, our method generates canonicalized panorama
frames that are both temporally consistent and distortion-free.
3D scene reconstruction. To demonstrate the 3D consistency of our generated
videos, we distill the panoramic videos produced by 360Anything into a 3D
Gaussian Splat (3DGS) [30]. We only test videos of static scenes such as indoor
rooms [96,105] as vanilla 3DGS cannot handle dynamic subjects. This process
involves two main steps: (i) First, we employ rig-based COLMAP [63, 64] on
the generated panoramic video to obtain camera poses. We project each video
frame to cubemap faces and perform constrained bundle adjustment using a
cubemap rig. (ii) Then, we train a vanilla 3DGS on the posed images. The scene
reconstruction results are qualitatively shown in Figure 6. Given a monocular
video with partial scene coverage, 360Anything outpaints the full 360◦ view that
provides enough geometric cues for 3D reconstruction. This allows free exploration
over the reconstructed scene, demonstrating its strong geometry consistency.

4.3 Single Image Camera Calibration

Experimental setup. To measure the camera parameters estimated by our
model, we evaluate 360Anything (the image version) on several benchmarks on
FoV and camera pose estimation. Given a testing image Xpers, we generate a

https://360anything.github.io/index.html#3d-scene-recon
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Table 3: Camera FoV estimation results
(in degrees). We borrow baseline numbers from
the MoGe paper [85]. Our zero-shot FoV esti-
mation approach outperforms several supervised
baselines, and lagging only slightly behind state-
of-the-art methods DUSt3R and MoGe.

Method
NYUv2 ETH3D iBims-1

Mean ↓ Med. ↓ Mean ↓ Med. ↓ Mean ↓ Med. ↓

Perspective [28] 5.38 4.39 13.6 11.9 10.6 9.30
WildCam [106] 3.82 3.20 7.70 5.81 9.48 9.08
LeReS [98] 19.4 19.6 8.26 7.19 18.4 17.5
UniDepth [56] 7.56 4.31 10.7 9.96 11.9 5.96
DUSt3R [86] 2.57 1.86 5.77 3.60 3.83 2.53
MoGe [85] 3.41 3.21 2.50 1.54 2.81 1.89

360Anything 3.90 3.17 5.68 4.22 5.21 4.04

Table 4: Camera pose estima-
tion results (in degrees). Base-
line numbers are from GeoCalib [77].
Our zero-shot approach outperforms
most supervised baselines and lags
behind current state-of-the-art, Geo-
Calib, by just ∼0.5 degrees.

Method
MegaDepth LaMAR

Roll ↓ Pitch ↓ Roll ↓ Pitch ↓

MSCC [70] 0.90 5.73 1.44 3.02
ParamNet [28] 1.17 3.99 0.93 2.15
UVP [53] 0.51 4.59 0.38 1.34
GeoCalib [77] 0.36 1.94 0.28 0.87

360Anything 0.87 2.56 0.68 1.23

panorama image Yequi, and infer the camera metadata via exhaustive search:

min
fov,pitch,roll

∥Xpers − pano2pers(Yequi; fov,pitch, roll)∥2,

where pano2pers() is the panorama-to-perspective image projection function,
and (fov, pitch, roll) are the estimated camera metadata.
Results on FoV estimation. We follow MoGe [85] and test our model on three
real-world datasets: NYUv2 [68], ETH3D [65], and iBims-1 [33]. Table 3 compares
360Anything with several baselines. It is worth mentioning that all baseline
models are trained on large-scale datasets specifically for 3D understanding tasks,
while 360Anything is only trained for image-to-360◦ outpainting. In addition,
over 90% of our training images are indoor scenes [103], thus creating a large
domain gap with the outdoor ETH3D and iBims-1 datasets. Nevertheless, our
zero-shot FoV estimation approach ranks among top-3 on most of the datasets.
It achieves a low average estimation error of only 4.93 degrees, outperforming
several supervised baselines while only lagging slightly (by 1− 2 degrees) behind
recent methods DUSt3R [86] (4.06) and MoGe (2.91).
Results on camera orientation estimation. We follow GeoCalib [77] to test
our model on MegaDepth [38] and LaMAR [62] datasets for estimating camera
roll and pitch angles from a single image. As shown in Table 4, our zero-shot
approach clearly outperforms most supervised baselines, only lagging behind the
current state-of-the-art GeoCalib (∼0.5 degrees in both roll and pitch). These
results demonstrate that our method learns to establish accurate correspondence
between the conditioning perspective input and the generated panorama image.

4.4 Ablation Study

Circular latent encoding. Table 5 and Figure 7 compare different seam
elimination techniques. We report the discontinuity score (DS) [9] to quantify
seam artifacts. Our circular latent encoding (CLE) dramatically reduces DS
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Table 5: Comparison of seam elimination techniques in perspective-to-360◦

image and video tasks. We report the discontinuity score (DS) to measure seams at
the boundary of the panorama. CLE stands for our Circular Latent Encoding technique.

Method
Image Video

Vanilla Blended Decoding CLE (ours) Vanilla Blended Decoding CLE (ours)
DS ↓ 9.92 5.29 3.87 35.52 19.84 13.28

Vanilla Blended Decoding Circular Latent Encoding (ours)

Fig. 7: Qualitative evaluation of various seam elimination techniques. For ease
of visualization, we shift the generated panorama by 180◦ to show the concatenation
of its left and right boundaries. Without any intervention (left), there are clear seams.
Blended Decoding [46] (middle) “blurs” the seam to remove discontinuities; yet, it
introduces gray line-like artifacts. Our technique (right) eliminates boundary artifacts
entirely. We recommend zooming-in to evaluate these differences appropriately.

compared to the blended decoding approach proposed in Argus [46]. In addition,
our method introduces no overhead to the generation process.
Camera augmentation. Training with randomly sampled camera FoVs and ori-
entations enables 360Anything to handle arbitrary perspective input at test time.
However, the common evaluation protocol of perspective-to-360◦ image generation
always uses conditioning images with 90◦ FoV and zero pitch and roll. We thus
study whether disabling random camera sampling can further improve model per-
formance. Surprisingly, Table 6 shows that such camera augmentation improves
results on all metrics. We hypothesize that training with a wide distribution of
camera setup forces the model to better understand perspective-equirectangular
geometry, preventing overfitting to a single mapping.
Robustness to camera parameters. We condition 360Anything on perspec-
tive images with different camera FoVs and orientations. As shown in Table 6, all
metrics improve as FoV increases, as a larger FoV gives more information about
the entire panorama image. Performance degrades slightly when changing pitch
and roll angles, yet the degradations are all less than 1.0. We further compare with
a variant of 360Anything that uses channel-concatenation instead of sequence-
concatenation for conditioning (dubbed CC w/ GT Camera). At test time, it
uses ground-truth camera metadata to perform the perspective-to-equirectangular
projection. Table 6 shows that it suffers from a similar performance drop as
360Anything; yet our method does not rely on camera metadata. Overall, these
results demonstrate the robustness of 360Anything.
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Table 6: Robustness to input view variations. We report the absolute FID/FAED
for the standard view (90◦, 0◦, 0◦) and the relative change in metrics (∆) for other input
views. The last column shows the average degradation across all input view variations.
w/o Camera Aug. stands for our method trained without camera augmentation, i.e.,
always train with (90◦, 0◦, 0◦) as the conditioning view. CC w/ GT Camera denotes
the channel concatenation model that has access to ground-truth camera information.
360Anything shows similar robustness to it even without camera metadata.

Metric Method
Conditioning View (FoV, Pitch, Roll)

Avg.
(90, 0, 0) (30, 0, 0) (60, 0, 0) (90, 30, 0) (90, -30, 0) (90, 30, 5) (90, -30, -5)

FID ↓
w/o Camera Aug. 8.4 +2.4 +0.8 +8.9 +9.2 +8.9 +8.7 +6.48
CC w/ GT Camera 7.7 +3.4 +0.8 +0.5 +0.9 +0.5 +0.9 +1.17
360Anything (ours) 8.0 +2.2 +0.8 +0.6 +0.9 +0.6 +0.8 +0.98

FAED ↓
w/o Camera Aug. 10.4 +6.6 +1.7 +1.4 +1.8 +1.4 +1.6 +2.42
CC w/ GT Camera 9.9 +5.1 +1.5 +0.4 +0.4 +0.3 +0.2 +1.32
360Anything (ours) 9.8 +5.4 +1.5 +0.3 +0.4 +0.3 +0.4 +1.38

Table 7: Ablation on training video canonicalization. To save compute, models
are trained at a lower resolution of 256×512. Imag., Aes., and Motion stand for Imaging
Quality, Aesthetic Quality, and Motion Smoothness from VBench [26]. Training on
canonical videos improves visual quality as indicated by FVD and VBench metrics.

Canonical
Real camera trajectory Simulated camera trajectory

PSNR ↑ LPIPS ↓ FVD ↓ Imag. ↑ Aes. ↑ Motion ↑ PSNR ↑ LPIPS ↓ FVD ↓ Imag. ↑ Aes. ↑ Motion ↑

No 26.56 0.0491 559.5 0.4689 0.4939 0.9894 24.66 0.0656 527.0 0.4601 0.4917 0.9888
Yes (ours) 24.02 0.0521 470.8 0.5437 0.5180 0.9899 22.39 0.0880 449.8 0.5387 0.5154 0.9903

Training video canonicalization. We ablate the effect of training on canoni-
calized panorama videos in Table 7. When training on non-canonicalized videos,
we always place the conditioning view at the center of the output image. This
makes reconstructing the conditioning frame much easier, leading to better PSNR
and LPIPS. However, it degrades the visual quality and fidelity significantly, as
clearly indicated by FVD and VBench metrics. This is because the model has to
generate panorama frames with varying gravity directions when the input video
has non-zero roll and pitch angles, forcing it to learn different spherical distortion
patterns. In contrast, we train 360Anything to generate gravity-aligned upright
panoramas, which greatly simplifies the generation task.

5 Conclusion

We present 360Anything, a geometry-free framework for in-the-wild perspective-
to-panorama generation. By shifting from explicit geometric unprojection to
simple sequence concatenation within a DiT, we eliminate the dependency on
camera information, allowing the model to learn geometric correspondence purely
from data. Furthermore, we identify VAE encoder padding as the root cause of
seam artifacts and introduce a novel and principled fix. Our approach not only
achieves state-of-the-art results on panoramic image and video benchmarks, but
also demonstrates robust zero-shot generalization to diverse, real-world media.
We discuss the limitations and future directions in Appendix C.
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A Detailed Experimental Setup

In this section, we provide full details on the datasets, baselines, evaluation
settings, and the training and inference implementation details of our model.

A.1 Training Data

Image data. To facilitate a fair comparison with the previous state-of-the-art
method, CubeDiff [29], we follow them to use the same panorama image datasets
as training data. These include Polyhaven [57], Humus [55], Structured3D [103],
and Pano360 [32]. For Structured3D, we use all three subsets, namely, empty,
simple, and full. As a result, around 90% of data are synthetic rendering of indoor
rooms from Structured3D. We then use Gemini 2.5 Flash [16] for captioning.
Data augmentation: to handle input images with diverse camera setup at test
time, we uniformly sample FoV in [30◦, 120◦], pitch in [−60◦, 60◦], roll in [−15◦,
15◦], and use them to crop the conditioning perspective images for training. We
also perform horizontal roll augmentation on the panorama image.
Video data. We use the panorama videos from the 360-1M dataset [78] featuring
YouTube videos. Specifically, we take the filtered subset from Argus [46], which
removes videos with non-panorama format, very low motion, and bad visual
quality. We then run our two-step video canonicalization pipeline (see Figure 8).
First, we run COLMAP [64] with rig support to estimate per-frame camera
pose, and then rotate each frame to eliminate inter-frame camera rotation (i.e.,
stabilize the video). Then, we run GeoCalib [77] to convert the video to a gravity-
aligned upright pose. Since the video is stabilized, all frames should share the
same gravity direction. We thus predict the direction for all frames and then
average the predictions after removing outliers (i.e., values more than 3 standard
deviations from the mean). GeoCalib is only trained on perspective images; thus
we project each panorama video frame to eight perspective images (elevation=0
with uniform azimuth), run GeoCalib on each image, and take an average after
the same outlier removal technique. Finally, we rotate the video so that its gravity
direction is aligned with the vertical axis. Similar to the image data, we use
Gemini 2.5 Flash to caption the video (downsampled to 1 FPS). We apply the
same pipeline to both the coarse and high-quality subset from Argus.
Data augmentation: to handle in-the-wild perspective video, we follow Argus to
simulate camera trajectories with randomly sampled linear motion plus noise.
However, we note that simple linear motion is not diverse enough, and models
trained on it fail to generalize to videos with complex motion (see Fig. 13). Thus,
we also incorporate camera trajectories extracted from real-world videos [59, 96]
during training. We randomly sample from simulated (80%) and real-world (20%)
trajectories to crop perspective videos as model conditioning.

A.2 Implementation details

Image model. We fine-tune FLUX.1-dev [34], a popular open weights text-
to-image diffusion transformer model. The target panorama and conditioning
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Fig. 8: Visualization of the video canonicalization pipeline. Top: Raw panorama
frames exhibit varying elevation angles, causing the horizon to fluctuate relative to the
reference line (red dashed). Middle: After stabilization, inter-frame rotation is removed,
resulting in a temporally consistent horizon height across all frames. Bottom: After
aligning the gravity direction to the vertical axis, the horizon is rectified to a straight
line parallel to the image boundaries, ensuring an upright orientation. Please refer to
our project page for better comparisons in video format.

perspective images are separately encoded with the VAE, flattened to 1D sequence
of tokens, and concatenated along the sequence dimension as model input. We use
the same spatial index (x, y coordinate of the token) to apply 3D RoPE [72] to
conditioning and target tokens. To distinguish between them in the concatenated
sequence, we offset the time dimension index by 1 when applying 3D RoPE to
perspective tokens following [35, 87]. We fine-tune the entire model using the
Adam optimizer [31] with a batch size of 512 for 50k steps. The learning rate
linearly increases from 0 to 5× 10−5 in the first 1k steps, and then stays constant.
A gradient clipping of 1.0 is applied to stabilize training. To apply classifier-free
guidance (CFG) [23], we randomly drop the text embedding of the caption and
the conditioning image with a 10% probability during training. The model is
trained on panorama images in the Equirectangular Projection (ERP) format
with a resolution of 1024×2048.
Inference. We use FLUX’s default rectified flow sampler [44] with 50 sampling
steps. FLUX computes timestep shifting based on the number of tokens. Images
at 1024×2048 resolution surpasses its maximum number of tokens (4096), we
thus uses its cutoff shifting value of exp(1.15) ≈ 3.16. We tried larger value but
observed degradation in the result. We apply CFG on both text and image similar
to [4], with a scale of 2.0 on text and 1.5 on image.
Video model. We fine-tune Wan2.1-14B [79], a popular open source text-to-
video diffusion transformer model. Most of the model design is the same as
the image model. The only difference is that, in 3D RoPE, we offset the time
dimension index of perspective tokens by 0.1 rather than 1 to avoid confusion
with tokens from subsequent frames. We fine-tune the entire model using the
Adam optimizer with a learning rate of 1 × 10−5, and a batch size of 64. The
same warmup schedule, gradient clipping, and CFG dropping are applied. The
model is first trained on ERP videos with 81 frames, 256×512 resolution from the

https://360anything.github.io/index.html#video-canonicalization
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coarse subset for 10k steps, and then on ERP videos with 81 frames, 512×1024
resolution from the high-quality subset for another 10k steps.
Inference. We run 50 sampling steps with Wan’s default sampler and timestep
shifting of 3.0, which outperforms 2.0 and 5.0 in our ablation. We use a CFG
weights of 3.0 for text and 2.0 for conditioning on perspective video.

A.3 Evaluation Setup

Perspective-to-360◦ image generation. We evaluate on the Laval Indoor [15]
and SUN360 [91] datasets. To measure visual quality, we report Fréchet Inception
Distance (FID) [21], Kernel Inception Distance (KID) [2], FID on CLIP [58]
features (CLIP-FID), and FID on features of an auto-encoder fine-tuned on
panorama images (FAED) [99]. In line with CubeDiff, FID, KID, and CLIP-FID
are computed on 10 perspective crops (10 azimuth angles randomly sampled
from [90◦, 270◦] to avoid overlap with the input view whose elevation=0◦) from
the generated panorama using the clean-fid package [52]. Meanwhile, FAED is
computed directly on the entire panorama as it measures the overall geometry of
the ERP. We adopt the implementation from PanFusion [99]1. We also report
CLIP-score (CS) [20] between captions and the ERP images for text alignment.
Perspective-to-360◦ video generation. We follow Argus and use a hold out
set of 101 videos as evaluation data. However, as the exact eval split from Argus
is unavailable, we reproduce the eval set based on offline communication with
the authors. We tested Argus on this reproduced eval set and ensured that
the metrics are comparable to those reported in the paper. Following Argus,
we use two types of camera trajectories, namely, simulated and extracted from
real-world videos, to obtain conditioning videos. To measure fidelity, we report
PSNR and LPIPS [101] between ground-truth and generated panorama videos
within regions covered by the perspective video. Concretely, it is computed by
projecting a mask to the ERP space using ground-truth camera information at
each step, and then take a union over all steps. We also report FVD [76] on the
ERP videos to measure the overall geometry and visual quality. Finally, we adopt
Imaging Quality, Aesthetic Quality, and Motion Smoothness from VBench [26] to
evaluate overall generation quality. VBench metrics are computed on perspective
projections (front, left, right, back) of the generated panorama videos.

A.4 Baselines

Perspective-to-360◦ image generation. Since we follow the evaluation setup
of the previous state-of-the-art (CubeDiff), we borrow the number of baselines
from their paper. Here, we only discuss CubeDiff. CubeDiff leverages a cubemap
representation, which projects the panorama image to six perspective views (six
faces of a cube), each with 90◦ FoV. At inference time, it inputs the conditioning
image as the front face, and denoises the other five faces jointly. This means
1 https://github.com/chengzhag/PanFusion

https://github.com/GaParmar/clean-fid
https://github.com/chengzhag/PanFusion
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Fig. 9: More perspective-to-360◦ image generation results from 360Anything.
We test on out-of-distribution images, such as AI-generated ones. The conditioning
perspective images are shown at the middle.

they always assumes the input image has a 90◦ FoV and lies at the center of the
generated panorama, preventing them from adapting to in-the-wild images with
arbitrary FoV and camera orientation.
Perspective-to-360◦ video generation. We compare with three recent works
with released code. Notably, if the method requires camera metadata to project
the perspective video to the ERP space, we always use ground-truth camera
metadata. This provides additional information compared to 360Anything.
– Imagine360 [74] leverages a dual-branch architecture based on AnimateDiff [18]

to process perspective and ERP data, connected with spherical attention. We
leverage their official code.

– Argus [46] projects the perspective video to the ERP space, and fine-tunes
SVD [3] to outpaint the entire panorama video. We leverage their official code.

– ViewPoint [13] is inspired by the cubemap representation, and designs a
viewpoint map representation with less spherical distortion compared to ERP.
It then fine-tunes Wan2.1 [79] on this new representation. However, similar
to CubeDiff, ViewPoint also places the conditioning video at the front view,
leading to severely rotated panoramas when the input video has large camera
motion. We leverage their official code.

B More Experimental Results

B.1 Failure Cases of Channel-Concatenation Baselines

A popular line of work in perspective-to-360◦ generation first projects the per-
spective input to the ERP space, and then concatenates it with the noisy target
latent channel-wise as model input. This requires external models to estimate
the FoV and camera orientations for the projection, which is tedious from a user
perspective. Moreover, channel-concatenation models may suffer from mistakes

https://github.com/3DTopia/Imagine360
https://github.com/Red-Fairy/argus-code
https://github.com/ali-vilab/ViewPoint
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Input Generated Panorama Video Rendered Views from 3DGS

Fig. 10: Qualitative results of 3D scene reconstruction. Given an input monocular
video (left), 360Anything outpaints the whole 360◦ viewpoint (middle), from which we
can optimize a 3DGS (right). This allows fly-through exploration of the entire 3D scene.

made by off-the-shelf camera estimators. As shown in Figure 14, when the input
video has complex camera trajectories or lighting conditions, even SoTA camera
estimators like MegaSaM [39] fail. In the first two examples, the predicted roll
angles drift significantly, leading to severely tilted objects in the conditioning view.
In the last example, the predicted FoV is too small, making the projected view
uninformative. Argus is unable to correct the out-of-distribution conditioning
input, and generates broken results. In contrast, 360Anything gets rid of explicit
camera information with a sequence-concatenation mechanism, and can still
generate reasonable panorama videos from these challenging videos.

B.2 Perspective-to-360◦ Image Generation

We present results on out-of-distribution perspective images in Figure 9. The
conditioning images are generated by text-to-image models. Despite mainly
trained on indoor synthetic data, 360Anything still generalizes to these OOD
samples with high visual quality and correct overall structure.

B.3 Perspective-to-360◦ Video Generation

Panoramic video outpainting. We show more qualitative comparisons in
Figure 15. In the first two examples, the conditioning perspective videos have
large elevation changes (moves up and down). Imagine360 and Argus handle this
by projecting the perspective view to the ERP space as model conditioning. Yet,
they still generate videos with low visual quality due to the use of poor video
backbones [3,18]. ViewPoint uses the same Wan [79] backbone as us. However, it
always treats the input frames as the front-view of the cubemap representation,
and thus has to generate significantly rotated panoramas. This leads to severely
distorted humans and objects. Thanks to the canonicalization training objective,
360Anything produces videos that are always upright, maintaining the correct
scene geometry. In the last example, the conditioning video contains a partially
observed hand. All baselines fail to outpaint the entire person, and only generate



26 Z. Wu et al.

Fig. 11: Panorama video generation given large motion videos. Regions corre-
sponding to the input conditioning video are highlighted in red. We test on perspective
videos with large object or camera motion.

Fig. 12: Panorama video generation on AI generated videos. Regions corre-
sponding to the input conditioning video are highlighted in red. We test on perspective
videos generated by other video models.

a small part of an arm. In contrast, 360Anything outpaints the entire person
following the text prompt, and still maintains it when the hand moves out of the
input view. This shows the strong world knowledge of our method.
3D scene reconstruction. We show more qualitative results in Figure 10.
Given a narrow field-of-view video from RealEstate10K [105], 360Anything
synthesizes the entire 360◦ view of the room. We can then train a 3D Gaussian
Splatting model [30] on the generated panoramas for novel view synthesis. This
demonstrates the high 3D consistency of our generated videos.
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Fig. 13: Ablation on real-world camera trajectories. 360Anything uses both
simulated and real-world camera trajectories to crop perspective videos in model training.
Models without this setup generate panorama frames with changing gravity directions,
fail to produce canonicalized videos and may suffer from broken structure.

Results on large motion videos. We stress test our model on perspective
videos with large object or camera motion. Figure 11 shows that 360Anything is
still able to produce temporally consistent videos that are in a stable canonical
pose. This shows that our model understands complex geometry and is able to
find correspondence across the 4D world.
Results on OOD videos. We test our model on perspective videos generated
by other video models, including Wan, Sora, Veo, and Runway Gen-4.5. Figure 12
shows that 360Anything still generates panorama videos with high quality. Notice
how the reflection of billboards on water is well handled in the first example, even
though it is not present in the input. In the second example, the dust caused by
the car persists after the car drives by. In the third example, the model generates
the statue underwater when the camera is above the water surface. The last
example features stylized black-and-white footage.
Ablation on real-world camera trajectories. We tested the model on in-
the-wild perspective videos with large camera motion. Large camera motion
makes maintaining a canonicalized panorama output more challenging. As shown
in Figure 13, models trained only with simulated camera trajectories fail to
produce frames with changing gravity directions. In contrast, 360Anything with
real-world camera trajectories generates stably canonicalized panorama videos.

C Limitations and Future Work

360Anything is fine-tuned from a pre-trained video diffusion model, and thus we
are bounded by the capacity of the base model. For example, it is challenging
to outpaint scenes involving complex physics. In addition, we also inherit the
bias in its training data. For example, the model sometimes generates panorama
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videos with black borders or undesired objects (e.g., a tripod or a human’s hand)
at the bottom of the video since they are common in YouTube 360◦ videos.

Due to the high resolution of panorama data (an ERP video has 8× number
of pixels compared to a normal perspective video) and the limited compute, our
current video model can only handle videos with 81 frames. A larger context
window will enable larger-scale 3D world generation. An interesting future di-
rection is combining 360Anything with recent progress in long video generation
that distills bi-directional DiTs to causal autoregressive DiTs [7,24,97]. To obtain
higher-resolution panoramas, we tried existing video upsamplers designed for
perspective videos [67]. However, this often re-introduces seams at the ERP
boundary, and distorts the structure of the ERP space, calling for research in
panorama upsampling techniques.
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Fig. 14: Perspective-to-360◦ video generation on challenging input videos.
MegaSaM [39] fails to predict the correct camera poses (first two examples) or FoV (last
example), leading to degraded generation results from Argus. In contrast, our method
runs end-to-end without a projection stage and thus generalizes well.
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“A man walks through a narrow street in a residential area. A truck, several cars and motorbikes are present.”
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“Near a harbor surrounded by a village and rolling hills, an old man is actively rowing with two white oars.”
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“A man in a dark grey t-shirt gestures towards a large green tank inside a dimly lit room.”

Fig. 15: Qualitative comparisons of perspective-to-360◦ video generation.
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